Gli1 Mediates Lung Cancer Cell Proliferation and Sonic Hedgehog-Dependent Mesenchymal Cell Activation

نویسندگان

  • Olga Bermudez
  • Elisabeth Hennen
  • Ina Koch
  • Michael Lindner
  • Oliver Eickelberg
چکیده

Non-Small-Cell-Lung-Cancer (NSCLC) represents approximately 85% of all lung cancers and remains poorly understood. While signaling pathways operative during organ development, including Sonic Hedgehog (Shh) and associated Gli transcription factors (Gli1-3), have recently been found to be reactivated in NSCLC, their functional role remains unclear. Here, we hypothesized that Shh/Gli1-3 could mediate NSCLC autonomous proliferation and epithelial/stromal signaling in the tumoral tissue. In this context, we have investigated the activity of Shh/Gli1-3 signaling in NSCLC in both, cancer and stromal cells. We report here that inhibition of Shh signaling induces a significant decrease in the proliferation of NSCLC cells. This effect is mediated by Gli1 and Gli2, but not Gli3, through regulation of cyclin D1 and cyclin D2 expression. While exogenous Shh was unable to induce signaling in either A549 lung adenocarcinoma or H520 lung squamous carcinoma cells, both cells were found to secrete Shh ligand, which induced fibroblast proliferation, survival, migration, invasion, and collagen synthesis. Furthermore, Shh secreted by NSCLC mediates the production of proangiogenic and metastatic factors in lung fibroblasts. Our results thus provide evidence that Shh plays an important role in mediating epithelial/mesenchymal crosstalk in NSCLC. While autonomous Gli activity controls NSCLC proliferation, increased Shh expression by NSCLC is associated with fibroblast activation in tumor-associated stroma. Our study highlights the relevance of studying stromal-associated cells in the context of NSCLC regarding new prognosis and therapeutic options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonic hedgehog-responsive genes in the fetal prostate.

The Hedgehog (Hh) signaling pathway plays an important role in prostate development and appears to play an equally important role in promoting growth of advanced prostate cancer. During prostate development, epithelial cells in the urogenital sinus (UGS) express Sonic Hedgehog (Shh) and secrete Shh peptide. The secreted Hh peptide acts on adjacent mesenchymal cells to activate the Hh signal tra...

متن کامل

Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum.

The transcription factor Snail represses E-cadherin and induces epithelial-mesenchymal transition, a process also exploited by invasive cancer cells. Aberrant Hedgehog (Hh) signaling was recently observed in a variety of epithelial cancers and it has been shown that the Hh target gene Gli1 induces expression of Snail. In this study, we examined whether Snail and Sonic Hedgehog (SHH) are express...

متن کامل

Sulforaphane reverses gefitinib tolerance in human lung cancer cells via modulation of sonic hedgehog signaling

Gefitinib is a targeted anticancer drug that was developed as an effective clinical therapy for lung cancer. Numerous patients develop gefitinib resistance in response to treatment. Sulforaphane (SFN) is present in cruciferous vegetables, and has been demonstrated to inhibit the malignant growth of various types of cancer cells. To investigate the role of SFN in gefitinib resistance, a gefitini...

متن کامل

Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1

Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) tran...

متن کامل

The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met

The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013